Northwestern Events Calendar

Mar
15
2019

Colloquium: Christoph Keplinger: Artificial muscles for a new generation of lifelike robots

When: Friday, March 15, 2019
4:00 PM - 5:00 PM CT

Where: Technological Institute, L211, 2145 Sheridan Road, Evanston, IL 60208 map it

Audience: Faculty/Staff - Student - Public - Post Docs/Docs - Graduate Students

Contact: Yassaman   (847) 491-7650

Group: Physics and Astronomy Colloquia

Category: Academic

Description:

Robots today rely on rigid components and electric motors based on metal and magnets, making them heavy, unsafe near humans, expensive and ill-suited for unpredictable environments. Nature, in contrast, makes extensive use of soft materials and has produced organisms that drastically outperform robots in terms of agility, dexterity, and adaptability. The Keplinger Lab aims to fundamentally challenge current limitations of robotic hardware, using an interdisciplinary approach that synergizes concepts from soft matter physics and chemistry with advanced engineering technologies to introduce intelligent materials systems for a new generation of life-like robots. One major theme of research is the development of new classes of actuators – a key component of all robotic systems – that replicate the sweeping success of biological muscle, a masterpiece of evolution featuring astonishing all-around actuation performance, the ability to self-heal after damage, and seamless integration with sensing.
This talk is focused on the labs' recently introduced HASEL artificial muscle technology. Hydraulically Amplified Self-healing ELectrostatic (HASEL) transducers are a new class of self-sensing, high-performance muscle-mimetic actuators, which are electrically driven and harness a mechanism that couples electrostatic and hydraulic forces to achieve a wide variety of actuation modes. Current designs of HASEL are capable of exceeding actuation stress of 0.3 MPa, linear strain of 100%, specific power of 600W/kg, full-cycle electromechanical efficiency of 30% and bandwidth of over 100Hz; all these metrics match or exceed the capabilities of biological muscle. Additionally, HASEL actuators can repeatedly and autonomously self-heal after electric breakdown, thereby enabling robust performance. Further, this talk introduces a facile fabrication technique that uses an inexpensive CNC heat sealing device to rapidly prototype HASELs. New designs of HASEL incorporate mechanisms to greatly reduce operating voltages, enabling the use of lightweight and portable electronics packages to drive untethered soft robotic devices powered by HASELs. Modeling results predict the impact of material parameters and scaling laws of these actuators, laying out a roadmap towards future HASEL actuators with drastically improved performance. These results highlight opportunities to further develop HASEL artificial muscles for wide use in next-generation robots that replicate the vast capabilities of biological systems.

 

Seminar Speaker: Christoph Keplinger, University of Colorado-Boulder

 Host: Chandrasekhar

Keywords: Physics, Astronomy, Seminar, Colloquium

Add to Calendar

Add Event To My Group:

Please sign-in