BEGIN:VCALENDAR
PRODID:-//planitpurple.northwestern.edu//iCalendar Event//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
CLASS:PUBLIC
BEGIN:VTIMEZONE
TZID:America/Chicago
TZURL:http://tzurl.org/zoneinfo-outlook/America/Chicago
X-LIC-LOCATION:America/Chicago
BEGIN:DAYLIGHT
TZOFFSETFROM:-0600
TZOFFSETTO:-0500
TZNAME:CDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0500
TZOFFSETTO:-0600
TZNAME:CST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
SEQUENCE:0
DTSTART;TZID=America/Chicago:20200930T110000
DTEND;TZID=America/Chicago:20200930T120000
DTSTAMP:20180822T000000
SUMMARY:Statistics Seminar Series (joint with Biostatistics): Jie Yang\, D-optimal Designs for Multinomial Logistic Models
UID:568437@northwestern.edu
TZID:America/Chicago
DESCRIPTION:Department of Statistics 2020-2021 Seminar Series (joint with Biostatistics) - Fall 2020 "D-optimal Designs for Multinomial Logistic Models" Speaker: Jie Yang\, Professor\, Department of Mathematics\, Statistics\, and Computer Science at University of Illinois at Chicago Abstract: Design of experiment with categorical responses is becoming increasingly popular in a rich variety of scientific disciplines. When the response is binary\, generalized linear models have been widely used. For optimal designs with generalized linear models\, the minimum number of distinct experimental settings required by a nondegenerate Fisher information matrix is equal to the number of parameters. It is also known that the experimental units should be uniformly allocated when a minimally supported design is adopted. When the response has three or more categories\, the models used in the literature should rather be treated as a special class of the multivariate generalized linear models\, known as multinomial logistic models. We show that\, unlike the designs for binary responses\, a feasible design for a multinomial logistic model may contain less experimental settings than parameters\, which is of practical significance. We also conclude that even for a minimally supported design\, a uniform allocation\, which is typically used in practice\, is not optimal in general for a multinomial logistic model. We develop efficient algorithms for searching D-optimal designs. Using examples based on real experiments\, we show that the efficiency of an experiment can be significantly improved if our designs are adopted. https://statistics.northwestern.edu/events/seminars/fall-seminars.html
LOCATION:Online
TRANSP:OPAQUE
URL:https://statistics.northwestern.edu/events/seminars/fall-seminars.html
CREATED:20180822T000000
STATUS:CONFIRMED
LAST-MODIFIED:20200930T111452
PRIORITY:0
BEGIN:VALARM
TRIGGER:-PT10M
ACTION:DISPLAY
DESCRIPTION:Reminder
END:VALARM
END:VEVENT
END:VCALENDAR