When:
Friday, April 26, 2024
11:00 AM - 12:00 PM CT
Where: Chambers Hall, Ruan Conference Room – lower level, 600 Foster St, Evanston, IL 60208 map it
Audience: Faculty/Staff - Student - Post Docs/Docs - Graduate Students
Cost: free
Contact:
Kisa Kowal
(847) 491-3974
Group: Department of Statistics and Data Science
Category: Academic, Lectures & Meetings
t-SNE and Local 1D Structures
Anna Ma, Assistant Professor, UC Irvine, Department of Mathematics
Abstract: Data visualization is a vital task in data exploration, especially in the presence of large-scale data sets. Rudimentary approaches for data visualization, such as scatter plots, histograms, and pie charts, can only represent a small number (typically, 1-2) of features at a time. Furthermore, such methods often lack the sophistication to capture higher dimensional structures in their representations. Fortunately, new approaches to high-dimensional data visualization, such as the t-distributed stochastic neighbor embedding (t-SNE) algorithm, have been proposed in recent years. One of t-SNE’s more interesting properties is its tendency to preserve local linear data structures while successfully representing clusterable data. Despite its wide success, there is limited mathematical understanding of the algorithm. In this talk, we will discuss the t-SNE algorithm and present theoretical guarantees for t-SNE’s output to answer the question: does t-SNE preserve 1-dimensional curves? The work presented is joint with Kat Dover and Roman Vershynin.