When:
Wednesday, October 23, 2024
4:00 PM - 5:00 PM CT
Where: Lunt Hall, 105, 2033 Sheridan Road, Evanston, IL 60208 map it
Audience: Faculty/Staff - Student - Public - Post Docs/Docs - Graduate Students
Contact:
Aaron Brown
(847) 491-3298
Group: Department of Mathematics: Colloquium
Category: Lectures & Meetings
Title: Random Links and Arithmetic statistics
Abstract: Étalé homotopy is a theory that enables the study of algebraic and arithmetic concepts through geometric perspectives. Barry Mazur observed that, from this viewpoint, square-free integers are analogous to links in three-dimensional space. We will explore this analogy and propose a way to give it a statistical flavor. Informally, we assert that a random square-free integer of size approximately X resembles the closure of a random braid on roughly logX strands. We will make this statement more precise by introducing a number-theoretical analog for a family of numerical link invariants (called Kei's) and use this analogy to propose a conjecture regarding their asymptotic behavior. We will also present a few cases where this conjecture has been proven. This is a joint work with Ariel Davis.