When:
Monday, March 10, 2025
4:00 PM - 5:00 PM CT
Where: Technological Institute, F160, 2145 Sheridan Road, Evanston, IL 60208 map it
Audience: Faculty/Staff - Student - Post Docs/Docs - Graduate Students
Contact:
Joan West
(847) 491-3645
Group: Physics and Astronomy High Energy Physics Seminars
Category: Academic
Neutrino-nucleus scattering cross sections are critical theoretical inputs for long-baseline neutrino oscillation experiments. However, robust modeling of these cross sections remains challenging. For a simple but physically motivated toy model of the DUNE experiment, we demonstrate that an accurate neural-network model of the cross section—leveraging Standard Model symmetries—can be learned from near-detector data. We then perform a neutrino oscillation analysis with simulated far-detector events, finding that the modeled cross section achieves results consistent with what could be obtained if the true cross section were known exactly. This proof-of-principle study highlights the potential of future neutrino near-detector datasets and data-driven cross-section models.
Karla Tame Narvaez, Research Associate, Fermilab
Host: Adrian Thompson