Monday, May 5, 2025 |
4:00 PM - 5:00 PM CT
Lunt Hall, 107, 2033 Sheridan Road, Evanston, IL 60208 map it
Title: Improved regularity for minimizing capillary hypersurfaces
Abstract: Capillary surfaces model the geometry of liquids meeting a container at an angle, and arise naturally as (constrained) minimizers of the Gauss free energy. We give improved estimates for the size of the singular set of minimizing capillary hypersurfaces: the singular set is always of codimension at least 4 in the surface, and this estimate improves if the capillary angle is close to $0$, $\pi/2$, or $\pi$. For capillary angles that are close to $0$ or $\pi$, our analysis is based on a rigorous connection between the capillary problem and the one-phase Bernoulli problem. This is joint work with Otis Chodosh and Chao Li.
Audience
- Faculty/Staff
- Student
- Post Docs/Docs
- Graduate Students